EE49 Laboratory 2 UART Communication, Sync, and Channel Correction

EE49 Laboratory 2

UART Communication, Sync, and Channel Correction
Due Date: 5/3/2011 before class

After completing this lab assignment, you must be checked off by a TA in lab and
provide your code via email. A few days before the due date, we will send out a
sign-up sheet for check-off timeslots. If none of these time slots work for you, it is
your responsibility to setup an alternate appointment with the TAs before the due

date. Good luck!

Introduction: In Lab 2, our goal is introduce you to aspects of digital signaling,
including simple channel codes and the effect of sending these signals over non-ideal
communication channels. In Part 1, we will ask you to demodulate a bitstream
which is encoded with one widely used digital protocol: Universal Asychronous Re-
ceive/Transmit (UART). This communication protocol is used in nearly every em-
bedded device, from mp3 players to digital watches. It is the basis for many older
communication standards like RS-232 and Infrared TV remotes. In Part 2, we will
use our UART decoder to receive a 256-color image. First, we will receive the image
on an ideal channel. Next, we will receive the image over an LTI non-ideal channel
and observe the effects of this non-ideality. Finally, you will design a simple equalizer
to estimate the effect of the channel and correct for it before decoding the signal. We
begin with a short primer on UART communications.

EE49 Laboratory 2 UART Communication, Sync, and Channel Correction

1 UART Primer

As aforementioned, UART is widely used for digital chip-to-chip communications on
embedded systems. While there are many configurations, a common UART packet
structure is 10 bits- 1 START bit, 8 DATA bits (one byte), and 1 STOP bit. This
structure is shown in figure [1| below, and is commonly referred to as 8nl (8 data bits,
no parity, 1 stop bit). Sometimes an additional bit is included for parity checking (a
simple form of error detection), but that is not covered in this lab.

olg[o[o[1]o]1]og

START DATA STOP

Figure 1: UART Packet Structure

The data byte is sent LSB (Least Significant Bit) first, which means we effectively
send the byte "backwards." For instance, if we wanted to send the byte 00101001, we
would transmit the following 10-bit sequence: 0100101001 (one start bit (0), the 8
data bits LSB->MSB (10010100), and then one stop bit (1)).

These bits are encoded as voltages: a HIGH voltage (i.e. 5 volts) to represent a 1,
and a LOW voltage (i.e. 0 volts) to represent a 0. The START bit is always a LOW
state, and the STOP bit is always a HIGH state. Each bit state is held for some
period of time - the symbol period - to generate a ’square-wave’ type of signal. The
amount of time for which we hold a LOW or HIGH bit determines the baud rate
(speed) of the link. In most systems, the transmitter and receiver agree upon this
baud (or bit-clock) rate in advance. The resulting packet signal is sent along a wire
from the transmitter to the receiver.

UART packets can be sent from the transmitter at any point in time , and there can
be any amount of time in between packets, hence the asynchronous nature of this
communication link. In order to achieve synchronization with an incoming packet,
the communication wire idles in the HIGH (1) state in between packets. Since the
START bit is always a LOW, we know a packet has begun when this transition occurs.
After we synchronize to the start of a packet, we use the known baud rate to estimate
the center of each data bit, and sample the voltage of the signal at this point. In
figure [2| below, we illustrate the start of a packet and the data-bit sampling interval.

After the receiver decodes the entire data packet, we reverse the result (to get the
original MSB->LSB) byte, and we’re done! We’ve received one UART packet. The
stop bit simply returns the communications wire to the original IDLE (HIGH) state,

2

EE49 Laboratory 2 UART Communication, Sync, and Channel Correction

s\ [X%\

Bit time interval determined by baud rate = Center of bit

Figure 2: UART Packet Structure

and the receiver begins waiting for the next START bit which signals the beginning
of the next packet.

With this primer, you are now ready to start the lab. If you have questions at this
point, ask the TAs for clarification on UART, or look for tutorials on the web. There’s
plenty of information available!

2 The Lab

In lab 1, we asked you to perform signal encoding. In this lab, we ask you to implement
the other side of the link: the decoder. Open lab2.vi and take a look at the overarching
structure. We have divided this lab into two parts. In Part 1, you will receive a short
message from a UART transmitter that we have already built. Open lab2 p2.vi.
In Part 2, you will receive an image from a UART encoder in a variety of different
ways: First, you will receive the image over an ideal channel. Second, you will receive
the image over a non-ideal LTT channel and observe the effects of this non-ideality.
Third, you will correct for the LTI channel using a simplified channel equalization
(correction) scheme.

3 Part 1: The UART Decoder

Your first task in this lab is to build a functional UART receiver. In Part 1, we have
encoded a message (in fact, it is a question) for you using an ASCII encoder and a
UART transmitter. The transmitter encodes 0’s as 0Volts and 1’s as 5Volts. Each
character of the message is represented using ASCII encoding. ASCII is a one-byte
(8 bit) representation for 256 of the most of the commonly used characters in the
English language. As a result, each UART packet you will receive consists of a single

EE49 Laboratory 2 UART Communication, Sync, and Channel Correction

character from this message. The characters of the message are sent in order, so they
should be kept in the order that they are received. After decoding the entire stream,
you will have received a question. Let’s open the uart receiver.vi subVI and get
started.

(1) Step 1: Build the Receiver State Machine

In this portion of the lab, we’re looking to help you develop a sense of the logic
behind a communications receiver. The UART receiver block takes two inputs: an
array representing our input signal and the number of samples per UART bit. The
latter value is the discrete-time equivalent to the UART baud rate. In this lab, we
send 4 samples per UART bit, so the clock rate is 1 bit /4 samples. Another equivalent
statement is that the symbol time is 4 samples. We will process the incoming signal
sample-by-sample, which is the purpose of the 'for’ loop. Our receiver requires a state
machine, with two basic states:

e State 1: IDLE, waiting to see a transition from HIGH->LOW. On transition,
go to state 2.

e State 2: READ, sample bits in the stream at approximately the middle of each
data bit. After we read 8 bits, convert these to a byte and return to IDLE.

We have put in place the basic logical structure you will need to build this state
machine. It is your job to make it run!

Build the logic for this state machine, using the nested case structure we
provide. Let case ’false’ = state IDLE and case ’true’ = state READ.

(2) Step 2: Decode the incoming sample stream

With a functional state machine in place, you should be able to decode the incoming
UART packets, and load them into an array of 8-bit unsigned integers. Do not forget:
each packet is received LSB-first. You'll have to flip the bits before you convert back
to decimal!

NOTE: We have provided the binary to_decimal function for your convienence. This
function accepts a 8-element array of binary numbers (0 or 1) and converts it to the
equivalent decimal value. This decimal value represents one character (in ASCII
encoding).

EE49 Laboratory 2 UART Communication, Sync, and Channel Correction

(3) Step 3: Read the question!

After your state machine is working and the incoming data stream is decoded, you
should be able to read the question. The conversion from an array of bytes to a string
is done for you. If you receive a sensible message, you've written a functional UART
decoder! Well done.

4 Part 2: An Image over an LTI Channel, and Dealing with
Non-Ideality

The goal for this part of the lab is to introduce you to non-ideal channels and the
theory of deconvolution. You will use your UART receiver to decode another stream
of data, this time for a 256-color 2d image. Open the file lab2 p2.vi. Use the 'path
to bmp’ control to point to one of the 256-color images (.bmp files) we provided with
the lab directory. There is a bunch of hoopla involved with importing and viewing
images in labview. You can ignore all of the picture import and cluster elements aside
from the picture data itself. The picture data is comprised (for this image) of a 1D
array of bytes, one byte per pixel. Thus, each pixel can take one of 256 colors. The
array is ordered by rows from the lowest left pixel to the upper right pixel. Perfect
for sending over a UART communication link! This is, in fact, what we’ll do: send
the picture over the UART channel and view it on the other side.

(1) Verify that your receiver still works

In the upper part of the lab2 p2.vi block diagram, the picture is encoded into a
UART stream, sent to your previously designed UART decoder, and then rebuilt into
a picture. Without doing anything other than pushing go, this should be able to
output the image perfectly! Verify this, and then continue.

(2) Estimating an LTI channel

The second communication link goes over a non-ideal, LTI channel. Plug the output
of the LTT channel into a graph node, and take a look at the resulting signal. It is
not clear what your receiver will do with this corrupted signal, so your output should
be nonsensical at best! At worst, you will not see very much at all. To make matters
worse, you do not know what the channel response for this channel is! The taps and
gain values are unknown to you. How should you go about decoding this message?

EE49 Laboratory 2 UART Communication, Sync, and Channel Correction

After considering this problem for a moment, notice the additional "byte’ (array el-
ement) which is pre-pended to the picture array. It contains decimal 85, which is
equivalent to binary 01010101. Your entire first UART packet, including the start
and stop bit, will then be 0101010101 (remember the data order goes LSB->MSB).
We'll call this packet the synchronization & training packet. Now, we give you the
following additional pieces of information:

1. Before the start of the first UART packet, the transmitter sends "11111111°.
This is simply to ensure that we begin with the communication line IDLEing
HIGH.

2. Following these first eight 1’s, we send the aforementioned "synchronization"
packet.

3. The LTT channel impulse response is no more than 8 taps long (h[i] = 0V i >
7), and the channel is noise-free.

4. The first tap of the channel impulse is guaranteed to be non-zero (h[0] # 0)

5. Before the UART transmission starts, the state of the communication line is
unknown (z[i] unknownV i <0)

6. After this first packet, the communication continues as usual: it sends the pixels
of the image.

What this means is that you know the first 18 inputs to the channel. You also observe
every output (including the first 18) of the channel. You also know that there are no
more than 8 unknown delay tap values. Eighteen known input bits, eighteen measured
output bits, and eight unknown tap values. It’s up to you to find the right solution
to this problem. Don’t forget: your inputs are actually over-sampled (4 samples per
bit). After our signal passes through the LTT channel, it is then fed to a subVI called
‘channel correction.” This is where you come in. We have provided you with every
piece of information you will need to design this block.

Here is your first task: In the ’channel correction’ vi, estimate the delays
and tap values of the channel impulse response. ***Important note: In
deriving a solution, you should use only the sample values after the 8th
sample. You should ignore the first 8 sample outputs, since we do not
know what went into the channel before the UART transmitter started.

(3) Correcting for the channel

Your channel correction vi should actually have two functions - first, estimating the
channel response and second, correcting the sample stream once you have come up

EE49 Laboratory 2 UART Communication, Sync, and Channel Correction

with a channel estimate. After you have built the channel estimation block, you will
need to design the correction block to remove the effects of this LTI channel for the
rest of the sample stream. Without this correction, your UART decoder will not
work.

We will consider a simple example to demonstrate how you are going to ’correct’ for
the channel: Consider the case where you have a channel which has a response of
length 2, and we know the first tap is non-zero. The output y[n| at any given time is
then

y[n] = h(n] * z[n] = Z hlk]z[n — k] = h[0]z[n] + h[1]z[n — 1]. (1)

Now, let’s assume we successfully built a channel estimation block to determine h|0]
and h[1]. Let’s also assume that we know x|n-1|, since that was the previous symbol
we should have already decoded (think about this for a moment - it’s a recursive
argument). Since we know everything besides x|n|, we just re-arrange the above
equation to get an estimate of the current sample:

2[n] = o7 (yln] = h{1]z[n — 1)) (2)

Work out the math and make sure you understand this idea! Since we know a number
of the first samples of the input stream x (the IDLE time and the SYNC packet), you
should be able to come up with an algorithm which uses this basic approach.

Your second task: In the ’channel correction’ vi, write the logic for cor-
recting the rest of the sample stream (after the sync packet). Output an
"equalized" (corrected) sample array, beginning after the synchronization
packet. You should be able to output the same image now, even over a
non-ideal channel! You will know its working when the output of this
block is a clean looking square signal and your UART receiver correctly
decodes the image.

Ask yourself this question: In the presence of random noise, would this channel
correction algorithm still work?

Finit. Well done!

	UART Primer
	The Lab
	Part 1: The UART Decoder
	Step 1: Build the Receiver State Machine
	Step 2: Decode the incoming sample stream
	Step 3: Read the question!

	Part 2: An Image over an LTI Channel, and Dealing with Non-Ideality
	Verify that your receiver still works
	Estimating an LTI channel
	Correcting for the channel

