
EE49 Laboratory 4 Demodulation

EE49 Laboratory 4
Demodulation

Due Date: 5/20/2011

After completing this lab assignment, you must be checked off by a TA in lab and
provide your code via email. If you cannot make the allotted timeslots, it is your
responsibility to setup an alternate appointment with the TAs before the due date.
Good luck!

GOAL: The goal of this lab is to learn about demodulation, and implement the
portions of a wireless BPSK receiver for a USRP-to-USRP link. Specifically we will
be implementing a simple channel correction scheme, a BPSK symbol de-mapper, a
preamble detection scheme, packet decoding, and a CRC error check.

Note: Most of the control traffic (especially LabView error handling) has been done
for you, and a few subVIs will be provided which should be helpful.

1 Primer

Here’s the basic lab setup: Similar to the previous lab, you will be given a TX and an
RX code. This time however, the transmitter is designed for you. Infact, it is quite
similar to the one you designed in the previous lab with the only difference being
the bit generation (a meaningful message will be transmitted instead of a random
bit generator). We’ll tell you the basic USRP2 parameters to use (carrier frequency,
samples/bit, etc.). Your job is to finish the RX code, i.e.receive and decode the
transmitted message.

(1) Transmitter Packet Format

Figure 1: Tx Packet Format

The transmitting lab USRP is sending a stream of packets in the format shown above.
There are:

1

EE49 Laboratory 4 Demodulation

• 31 bits of a pseudo-noise (PN) code preamble/sync (whose purpose we will come
to shortly!). We will provide you with the value of these 31 bits.

• followed by 30 bytes(240 bits) of data in ASCII format

• followed by 1 byte(8 bits) of CRC error checking.

(2) High-level Receiver Block Diagram

Figure 2: Receiver Block Diagram

At a high level, the receiver block diagram is shown in figure 2 above. The block in
blue is already completed for you. The blocks in red are not complete, and are up
to you to get working. At the end of this lab, you’ll have a simplified but functional
wireless receiver! We briefly review each block in this primer, and provide more detail
in the following sections.

(3) Channel Equalization

As aforementioned, this block is completed for you. While it is a straightforward idea,
channel equalization is quite difficult to implement in practice. You are not respon-
sible for designing this block, but it is imperative that you understand the
basic idea behind it.

Here’s the basic idea: We’ve implemented a "blind" equalization scheme, which
means it corrects the phase and frequency offset of the channel without knowing any-
thing about the transmitted message except for the modulation scheme (i.e. BPSK).
Sounds great, but it turns out there is one problem...

For BPSK, the equalizer expects that the incoming symbols should have one of the
two values sent by the transmitter, i.e. +j or -j as in lab three (see figure 3 for a
refresher on the BPSK symbol map). Essentially, the blind equalizer looks at a large

2

EE49 Laboratory 4 Demodulation

Figure 3: BPSK Symbol Map

set of received symbol samples, and corrects for a phase & frequency offset which
equalizes all of the received symbols "close" to transmitted symbols (+j or -j).

Take a minute or two to think about this equalizer. While this works fairly well for
BPSK, there’s one unfortunate side effect that you’ll be responsible for fixing. What
happens if the phase & frequency offset of the received symbol stream is
greater than 90o? It turns out that in this case, the equalizer will probably guess
wrong, i.e. it will assume that 1’s are 0’s and 0’s are 1’s. The next block will attempt
to correct this issue.

(4) Sync/Preamble Detection & Binary Channel Correction

In this block, we’re going to kill two birds with one stone: Check the equalizer’s
phase/frequency guess and fix it (if it’s wrong), and detect the start of a valid data
packet.

We can think of the output from the channel equalizer as a communication channel
which beyond adding a small amount of noise, either flips all the transmitted symbols
(when the equalizer wrongly estimates the phase offset, all the transmitted ’+j’s are
received as ’-j’s and vice versa) or let’s it through without any flipping (when the

3

EE49 Laboratory 4 Demodulation

equalizer correctly estimates the phase offset). At the receiver, we don’t know whether
the symbols were flipped or not - yet. This is where the 31 bits of preamble/sync
come in handy. This signal, which we’ll refer to as p[n], is inserted at the beginning
of each transmitted packet.

We will provide this 31-bit message, which has a particular form and some special
properties. We’ll come to these properties in a moment, but first, a short aside on
correlation:

1.4.1 Correlation

We define the cross-correlation of two signals f [n] and g[n] as

(f ? g)[k] =
∞∑

m=−∞

f ∗[m]g[k +m] (1)

If g[n] = f [n], then this is called the autocorrelation of the signal f[n]. The output
of this equation is effectively how much the signal f [n] looks like the signal g[n] when
g is offset from f by k samples.

Now, here are the special correlation properties of the provided PN preamble/sync
p[n]

• First, p[n] is what’s called a pseudo-noise sequence, which means it doesn’t
correlate well with any other signal, i.e. (p?f)[k] is small for all k if f [n] 6= p[n].

• Second, p[n] only auto-correlates well with itself at zero-sample offset, i.e. (p ?
p)[0] is large, and (p ? p)[k] is small for k 6= 0.

Can you guess how this might come in handy for the preamble detection? Here’s what
we’re going to do: maintain a sliding correlator, which calculates the correlation be-
tween the last 31 symbols of the incoming signal r[n] and the known sync/preamble
signal p[n]. If we are receiving the beginning of a packet (i.e. the 31 bits of the
sync/preamble field) and the polarity hasn’t been flipped by the equalizer, the cor-
relator will be large positive. If we are receiving the beginning of a packet and the
polarity has been flipped, the correlator will be large negative!

Think about this for a moment!!!.
Let’s work through an example to see how this works. Suppose that our preamble se-
quence is just 5 bits long (10110). This will be encoded to p[n] = (−j,+j,−j,−j,+j)
and will be attached to the beginning of every data packet at the transmitter (note
here that the order of transmission is as shown, i.e. -j is transmitted first followed by

4

EE49 Laboratory 4 Demodulation

+j, -j, -j, +j, eventually followed by the data) . Now let’s say the received equalized
symbol sequence in order of reception is:
r[n] = (+j,−j,+j,−j,−j,−j,−j,+j,−j,−j,+j,) ,i.e. r[0] = +j is the first re-
ceived symbol and r[1] = −j is the second and so on.

Note that, this is just an example where all the equalized symbols exactly match up to
the expected constellation points. In reality, however, the equalized symbol sequence
will also include a small amount of noise. Carrying forward with our example, let’s
try and calculate the correlation of the received sequence with our expected preamble.
The correlation of the first 5 received symbols with the preamble :

Correlation = r∗[0]p[0] + r∗[1]p[1] + r∗[2]p[2] + r∗[3]p[3] + r∗[4]p[4]

= (+j)∗(−j) + (−j)∗(+j) + (+j)∗(−j) + (−j)∗(−j) + (−j)∗(+j)

= (−1) + (−1) + (−1) + (+1) + (−1)
= −3

The correlation of the 2nd to 6th received symbols with the preamble :

Correlation = r∗[1]p[0] + r∗[2]p[1] + r∗[3]p[2] + r∗[4]p[3] + r∗[5]p[4]

= (−j)∗(−j) + (+j)∗(+j) + (−j)∗(−j) + (−j)∗(−j) + (−j)∗(+j)

= (+1) + (+1) + (+1) + (+1) + (−1)
= 3

and so on

Having looked at these calculations, try to convince yourselves of the following :

• In the absence of noise, the correlation value of a portion of the received sequence
with a 5 bit long preamble will always lie between 5 and −5.

• In the absence of noise, the correlation value of a portion of the received sequence
with the preamble will always be a real number.

• The higher the correlation value (close to 5), the larger the possibility that we
are looking at the start of a packet. In other words, the higher the value, the
more closely the received sequence resembles the preamble.

• The higher the magnitude of the correlation value in the negative direction (close
to −5), the larger the probability that we are looking at the start of a packet and
the equalizer has made a mistake in the phase equalization. In other words, the
higher the magnitude of correlation in the negative direction, the more closely
the received sequence resembles a flipped version of the preamble. Note that if
this is the case, we can be sure that the ensuing data is also flipped and can
hence perform the necessary correction.

5

EE49 Laboratory 4 Demodulation

Hence, in the above received sequence, when we calculate the correlation of the 7th

to 11th received symbols with the preamble :

Correlation = r∗[6]p[0] + r∗[7]p[1] + r∗[8]p[2] + r∗[9]p[3] + r∗[10]p[4]

= (−j)∗(−j) + (+j)∗(+j) + (−j)∗(−j) + (−j)∗(−j) + (+j)∗(+j)

= (+1) + (+1) + (+1) + (+1) + (+1)

= 5

We see a high positive value and can guess with a high confidence, that this is the
start of the packet and that the recived symbol number 12 onwards we should start
receiving the actual transmitted message. Also we can guess with high confidence,
that the equalizer did notmake any mistake in the carrier and phase offset correction.

Note that this was just an example where 5 length preamble was used.
In the lab, we will be using 31 bit preamble to minimize any risk of false
detection. Hence, by a "high positive value" of correlation, we would
mean something close to 31 and by "high negative value" of correlation,
we would mean something close to -31.

When this correlation crosses some threshold ±Cthresh, we will look for the peak of
the correlation (to ensure that we’ve found the actual first symbol of the packet),
and make note of our guess for the starting bit of the packet preamble.
Additionally, we’ll then apply a binary correction (i.e. multiply the received
symbols by -1) if the equalizer flipped our polarity. Now the symbols are
ready to be de-mapped into bits. You should send the following 30+1 bytes
(data + crc) to the symbol demapper.

(5) Hard BPSK Demapper

Next, we’ll implement a hard demapper to get bits back from the received symbols.
For the 30+1 bytes of the packet, we’ll demap each symbol into a bit. Here’s how it
works: Look at the BPSK symbol map shown in figure 3 above. If both symbols are
sent with equal probability, we have a very simple decision rule for each symbol:

• If the received quadrature component q[n] ≥ 0, then we guess that we’ve re-
ceived a 0.

• If it is below zero, then we guess that we’ve received a 1.

Mathematically, we state this as

x̂[n] =

{
0 q[n] ≥ 0
1 q[n] < 0

(2)

6

EE49 Laboratory 4 Demodulation

where x̂[n] is our estimate of the transmitted symbol x[n].

(6) Packet Decoder

We’re almost there! Now we have a bitsteam of estimates for each bit x̂[n]. We now
should separate the bitstream into two segments:

• the 30 bytes corresponding to the data

• the 1 byte corresponding to the crc

For a sanity check, we’ll send the 30 bytes of message to an ASCII decoder and see
what we’ve got. Finally, we’ll send the 30 bytes of data plus the 1 byte CRC to a
CRC error checker to see if there are any errors. Note that it’s perfectly fine to decode
the message whether or not the CRC is OK. If the CRC is wrong, you’ll just get an
entirely (or partially) garbled message.

(7) CRC Check

CRC is a set of bits (8 in our case) that are calculated and appended at the end of
the data portion of the packet while transmitting. This allows for a verfication of the
correctness of the recived message at the receiver. Note that it only detects errors
and cannot correct them. For a detailed discussion on the concept of CRC, refer to the
wikipedia article on the same (http://en.wikipedia.org/wiki/Cyclic_redundancy_check)
, especially go through the section titled "Computation of CRC". In this lab, we will
be computing an 8-bit CRC and hence we would need a 9-bit CRC divisor. We choose
the CRC divisor bit sequence to be:
1 0 0 0 0 0 1 1 1
This CRC is also known as CRC-8-CCITT.

2 Lab 4 Walkthrough

Open RX_lab4.vi. Most of the control traffic and the initialization has been taken
care of. The subVI "generate system parameters" does the same function as it did
in the transmitter code, i.e. it outputs a cluster named "PSK system parameters"
which has 2 entries:

7

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

EE49 Laboratory 4 Demodulation

• A numeric "Samples per symbol"

• An array of complex values "Symbol map"

Note that, in this lab we would be using BPSK modulation and the corresponding
constellation would look like 3.

The next step is the subVI "validate and generate filer" which generates a "matched
filter" which is designed to in order to undo the effects of the Root Raised Cosine
Filter applied on the transmitter side.

The general procedure of receiving data from the USRPs is to allocate a buffer of
some size and pass it to the USRP driver which then fills it with the received samples
and passes it back. This takes place in the subVI "niUSRP Fetch Rx Data (poly).vi"
inside the while loop. The size of this buffer is decided by the input "Acq Duration
[sec]" which is set ot "50 ms" by default. This implies, the buffer is so allocated that
whenever the USRP is accessed, we get "50 ms " worth of received data. To achieve
this, the buffer size is such that it can hold AcqDuration∗RXSamplingRate number
of complex samples.

A resampled version of these received samples alongwith the "PSK system parame-
ters" and the "matched filter" are passed on to the subVI "Demodulate PSK". This
is where the equalization takes place. As described earlier, the equalization has been
taken care of. Look at it as a block which removes the effects of the transmit side filter
and equalizes any carrier frequency or phase offsets and outputs a set of equalized
samples (you will receive "Samples per symbol" number of samples for every BPSK
symbol).

The output of "Demodulate PSK" is then truncated and passed on to the subVI that
plots the received constellation diagram. In order to avoid extensive data process-
ing in each iteration of the while loop (each time a set of samples is received), we
decided to push all the processing outside the while loop. This implies, whenever
RX_lab4.vi is run, a large set of samples is acquired over and over again, however,
only the equalization is taken care of and the received samples are plotted on the
constellation diagram. Eventually, when you hit "STOP", the code stops acquiring
received samples (exits the while loop) and starts processing the last batch of re-
ceived samples. The first step of this data processing is the decimation. The complex
waveform is unbundled and the array of complex samples are passed on to the subVI
"Decimate.vi". This is where your task starts.

8

EE49 Laboratory 4 Demodulation

(1) Decimate

Open "Decimate.vi", the input "Signal In" is an array of equalized complex samples,
you will have "Samples per symbol" number of complex samples per BPSK symbol.
Another input is "Samples per symbol". Your task is to decimate the "Signal
In" array which means to discard the extra samples and form a stream of
BPSK symbols. This is in some sense, the converse of the upsampling operation you
performed on the transmitter. You are guaranteed that the first sample corresponds
to a BPSK symbol and from thereon, you need to skip "Samples per symbol" - 1
samples to get to the next BPSK symbol and so on, till the end of the array.

A typical input and output scenario is shown in 4 for verfication purposes.

Figure 4: Output of Decimate.vi

9

EE49 Laboratory 4 Demodulation

(2) Preamble Detector & Channel Correcter

This stream of BPSK symbols is then passed on to the subVI "preamble_detector_channel_corrector.vi".
This subVI, as the name suggests should check for the start of the preamble, corrects
the channel in case the equalizer flipped polarities, and then outputs the corrected
symbols corresponding to the 30 + 1 bytes of data + crc. Finish this subVI. The
subVI "preamble_generator" will output the 31 preamble bits for you to compare
against. While implementing the preamble detector and channel corrector, keep in
mind the following:

• preamble_generator generates the bits corresponding to the preamble, and you
should ensure that these bits are mapped according to the BPSK constellation
in 3 before comparing it with the received symbols.

• The input array "Imput Symbols" which consists of the received symbols is
stored in the order of reception (i.e. Input Symbols[0] is the first received
symbol) and the "preamble_generator" outputs the preamble bits in order of
transmission (i.e. preamble[0] is the first preamble bit transmitted), thus while
calculating the correlations, you will not need to flip any of these arrays.

• Notice the correlation formulae describe in the primer carefully, you will need
to form the complex conjugate of one of the arrays before multiplying it with
the other.

• The correlation value in general would be a complex number. However, as our
calculations in the primer showed, if there is no noise, then the correlation value
should turn out to be a real number. Even in the general case of noisy symbols,
it is fair to discard the imaginary part of the correlation value and only consider
the real part while comparing it with the threshold ±Cthresh.

• As noticed in the primer, for a 31 bit long preamble, the correlation value should
be close to 31 to confidently say "This is the start of the packet" and it should be
close to -31 to confidently say "This is the start of the packet and the equalizer
made a mistake while correcting phase offset". A typical value of the threshold
can be chosen to be 30, i.e. compare the magnitude of the correlation with 30
to check for start of packet and see its sign to decide whether or not to correct
the symbols.

• The correction (if necessary) only involves flipping the polarity of the received
complex samples.

• Eventually, output the corrected version of the complex samples that correspond
to the data + CRC portion of the packet. That is , discard the preamble and

10

EE49 Laboratory 4 Demodulation

output the succeding (30 + 1) * 8 BPSK symbols which correspond to the data
+ CRC portion of the packet.

(3) Packet Decoder

This array of "Corrected data+CRC" is passed on to the subVI "packet_decoder.vi".
In this subVI, you are supposed to do the following:

• Make a hard decision on the received symbols and map each one of them to
a bit. Complete the subVI "Hard Demapper.vi" which performs this
hard demapping. Refer to the primer’s section on Hard demapping for more
information.

• Each byte of the data portion corresponds to an ASCII character, hence you
should have 30 characters (corresponding to the 30 bytes) in the message. Con-
vert this stream of bits to an array of 30 integers corresponding to the
ASCII values. You can use the subVI "binary_to_decimal" for this purpose.

• Eventually, just to make sure that the received message is the correct one,
you should perform a CRC check. Complete the subVI "CRC_check.vi"
which inputs the CRC appended message and the CRC polynomial
and outputs whether or not the check was succesful. For more informa-
tion on CRC checking, refer to the primer.

Eventually, this ASCII array will be converted to text and displayed on the front
panel of RX_lab4.vi.

3 Verification

In order to verify "Decimate.vi", try to replicate 4. For the overall verification, do
the following:

• Start the TX_lab4.vi with the correct parameters. The parameters that need
to be filled are similar to the previous lab. However, this time around, you do
not have the option of sending a QPSK stream. The indicator "data + CRC
length" shows the number of bits in the data + CRC portion of the packet. For
a sanity check, confirm that this indicator shows "248" which corresponds to
(30+1)*8 bits in the data + CRC portion of the packet.

11

EE49 Laboratory 4 Demodulation

• Start the RX_lab4.vi with the correct parameters. The parameters that need
to be filled are similar to the previous lab, however, the extra parameter to be
filled is "data length". Since, we are sending a 30 byte data, this control should
be set to "240" which corresponds to the number of bits in the data portion of
the packet.

• As described in the walkthrough, the receiver starts collecting samples, equal-
izing and plotting them. No data processing is being performed yet. Hit the
"STOP" button, to stop collecting samples, this automatically initiates the
data processing chain (preamble detection and channel correction and packet
decoding) on the last set of received symbols.

• If you receive a meaningful message on the "Output Message" indicator and a
green light on the "CRC check" indicator, you are Done!!!

12

	Primer
	Transmitter Packet Format
	High-level Receiver Block Diagram
	Channel Equalization
	Sync/Preamble Detection & Binary Channel Correction
	Correlation

	Hard BPSK Demapper
	Packet Decoder
	CRC Check

	Lab 4 Walkthrough
	Decimate
	Preamble Detector & Channel Correcter
	Packet Decoder

	Verification

