MCCD 系列显示控制一体 PLC 随机手册

感谢您选用麦格米特MCCD系列显示控制一体PLC。在使用产品前,请您仔 细阅读本手册,以便更清楚地掌握产品特性,更安全地应用,充分利用本产品 丰富的功能。

本手册用于MCCD系列显示控制一体PLC的设计、安装、连接、使用和维护的快速 指引,便于用户现场查阅所需信息,并有相关选配件的简介,常见问题答疑等, 便于参考。

本手册适合 MCCD 系列显示控制一体 PLC 以下成员:

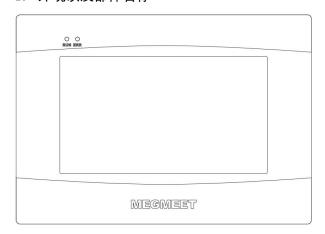
MCCD-1616BMD1

MCCD-1616BMD2

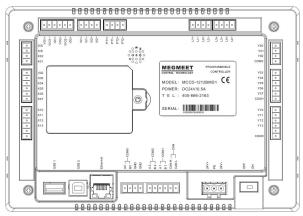
MCCD-1616BMD3

MCCD-1616BMD4

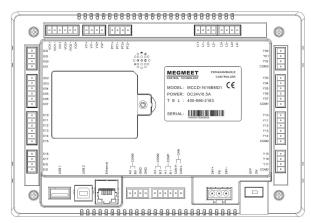
MCCD-1212BMD1


MCCD-1212BMD2

MCCD-1212BMD3 MCCD-1212BMD4


版本号: A02 日期: 2019.9.25

编码:


1. 外观以及部件名称

MCCD 系列显示控制一体 PLC 正面图

MCCD-1212BMD*背面图

MCCD-1616BMD*背面图

型号说明

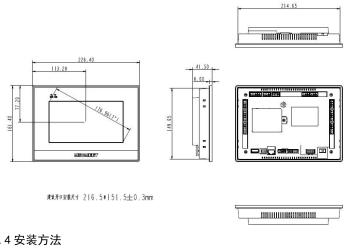
							PLC	答源	配置				
型号		数字	it .			模拟		54 1031	HO.F.			通信	
空专	输入	<u>输</u> 晶体管		TC	PT	/ 电流型	D 电压型	DA	高速脉冲	高速计数	RS485	CAN	下载口
MCCD-1616BMD1	16			4	2	2	X	2	3	2	1	1	1
MCCD-1616BMD2	16	8	8	4	2	X	2	2	3	2	1	1	1
MCCD-1616BMD3	16	8	8	4	2	2	X	2	3	2	1	X	1
MCCD-1616BMD4	16	8	8	4	2	X	2	2	3	2	1	X	1
MCCD-1212BMD1	12	8	4	4	2	2	×	2	3	2	1	1	1
MCCD-1212BMD2	12	8	4	4	2	X	2	2	3	2	1	1	1
MCCD-1212BMD3	12	8	4	4	2	2	×	2	3	2	1	X	1
MCCD-1212BMD4	12	8	4	4	2	X	2	2	3	2	1	X	1
MCCD-1208BRD1	12	8	X	5	1	2	X	2	3	2	1	X	1

备注: ×表示不配置

3. 安装说明

3.1 环境温度

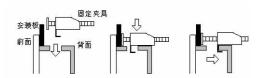
产品使用环境温度范围: -10℃~55℃。


湿度: <85%RH, 不结露。

使用环境温度长时间超过55℃时,最好选择通风良好的场所。

3.2 安装场所

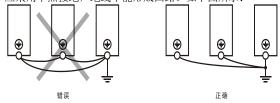
- ◆ 无腐蚀、易燃易爆气体和液体的场所。
- 坚固无振动的场所。
- 本产品设计用于安装环境 II 标准、污染等级 2 的应用场合。


3.3 安装尺寸

3.4 安装方法

须水平安装在电气柜的背板上,上下方向安装并保持产品与上方和下方 的设备或柜壁的距离不小于20cm。其他方向安装均不利于产品自身散热, 且产品下方也不可有发热设备。

按照开孔尺寸在面板上开孔, MCCD 系列显示控制一体化 PLC 从面板前面 嵌入,使用随机配备的四个安装支架将文本显示器固定,操作示意图见 下图:

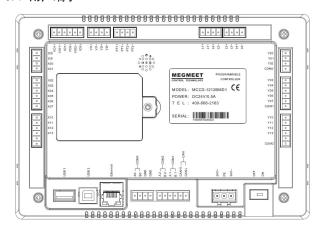


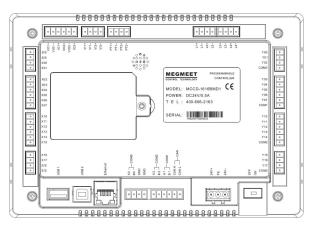
3.5 电缆连接及规格

在为产品配线时,建议使用多股铜导线,并预制绝缘端头,这样可保证 接线质量。推荐选用导线的截面积和型号如下表所示。

线缆	位置	允许导线号	建议剥线长度	安装方式
电源端子 (3PIN)	背面	16~28AWG	6. 5mm	螺钉式
通讯端子(10PIN)	背面	16~28AWG	6. 5mm	螺钉式
DA 输出端子 (6PIN)	背面	16~28AWG	6. 5mm	螺钉式
AD 输入端子 (4PIN)	背面	16~28AWG	6. 5mm	螺钉式
TC 输入端子 (8PIN)	背面	16~28AWG	6. 5mm	螺钉式
PT100 输入端子 (4PIN)	背面	16~28AWG G	6. 5mm	螺钉式
数字量输入端子(20PIN)	背面	16~28AWG	6. 5mm	螺钉式
数字量输出端子 (20PIN)	背面	16~28AWG	6. 5mm	螺钉式

◆为了安全(防止电击和火灾事故)和减少噪声,模块的接地端子应严格按照国家电气规程要求接地,接地电阻应小于0.1Ω。多台模块接地时,应采用单点接地,地线不能形成回路。如下图所示:




4. 电源估算

项目	单位	最小值	典型值	最大值	备注
输入电压范围	Vdc	20.4	24	30	正常启机和工作范围
输入电流	A	0.45	0. 5	0. 55	常温额定满载

5. 端子介绍

5.1 用户端子

MCCD-1212BMD1/2/3/4 用户端子定义表

标注	说明
24V+, 24V-	输入电源直流 24V
PE	大地
A0, B0	RS485 接口 0 (COMO)
A1, B1	RS485 接口 1 (COM1)
A2, B2	RS485 接口 2(COM2)
CANH、 CANL	CAN 接口 0
X00∼X01, S/S	高速输入端口0~1,输入公共端
X02∼X13, S/S	开关量输入端口02~13,输入公共端
Y00∼Y02, COMO	高速输出通道0~2,输出公共端0
Y03∼Y07, COM1	开关量输出通道3~7,输出公共端1
Y10∼Y13, COM2	开关量输出通道 10~13,输出公共端 2
VI1+, VI01-, I01+, VI2+, VI02-, I 02+	模拟量输出通道 1~2(电压、电流兼容)
VI1+, VI1-, VI2+, VI2-	模拟量输入通道 1、通道 2(电压或者电流)
PT1+, PT1-, PT2+, PT2-	PT100 输入通道 1、通道 2
L1+, L1-, L2+, L2-, L3+, L3-, L4+,	TC 输入通道 1、通道 2、通道 3、通道 4
L4-	10 個八週進 1、週進 2、週進 3、週進 4
ЕТН	以太网接口
USB1	U盘接口,用于程序升级
USB2	USB 接口,用于程序调试、下载

MCCD-1616BMD1/2/3/4 用户端子定义表

标注	说明
24V+, 24V-	输入电源直流 24V
PE	大地
A0, B0	RS485 接口 0 (COMO)
A1, B1	RS485 接口 1 (COM1)
A2, B2	RS485 接口 2 (COM2)
CANH, CANL	CAN 接口 0
X00~X01, S/S	高速输入端口0~1,输入公共端
X02~X17, S/S	开关量输入端口02~17,输入公共端
Y00∼Y02, COMO	高速输出通道0~2,输出公共端
Y03∼Y07, COM1	开关量输出通道 3~7 输出公共端 1
Y10∼Y17, COM2	开关量输出通道10~17 输出公共端2
VI1+, VI01-, I01+, VI2+, VI02-, I 02+	模拟量输出通道 1~2(电压、电流兼容)
VI1+, VI1-, VI2+, VI2-	模拟量输入通道 1、通道 2(电压或者电流)
PT1+, PT1-, PT2+, PT2-	PT100 输入通道 1、通道 2
L1+, L1-, L2+, L2-, L3+, L3-, L4+, L4-	TC 输入通道 1、通道 2、通道 3、通道 4
ЕТН	以太网接口
USB1	U盘接口,用于程序升级
USB2	USB 接口,用于程序调试、下载

5.2 通讯接口

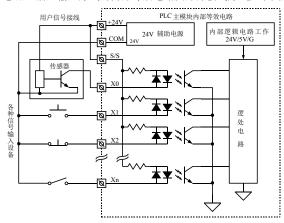
	名称	所支持的协议	所属位置	物理层
	通讯口0	ModBus(从站)	COMO (AO ,BO)	RS485
	通讯口1	ModBus(主,从站) 自由口	COM1 (A1 ,B1)	RS485
	通讯口2	ModBus(主,从站)	COM2 (A2 ,B2)	RS485
	通讯口3	CAN 自由口	CANO (H, L)	CAN
	通讯口4	以太网	ETH	TCP/IP
Ī	通讯口5	USB 主站	USB1	USB
	通讯口6	USB 从站	USB2	USB

备注:1、通讯口 2 为 $\rm HMI$ 资源,使用需要在 $\rm MEGVIEW2$ 中进行设置,默认 $\rm Modbus$ 从站,如果使用 $\rm Modbus$ 主站,需要使用宏定义。

2、通讯口 4、5、6 是 HMI 资源,使用需要在 MEGVIEW2 中进行设置。

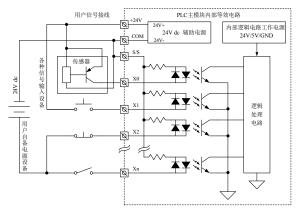
6. 开关量输入输出特性

6.1 开关量输入特性与信号规格

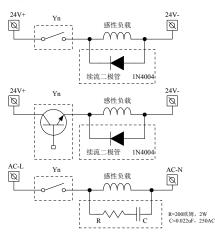

计数器输入端口有最高频率限制。当超过该限制后,可能导致计数不准,或系统无法正常运行,请合理安排输入端口,选用合适的外部传感器。本 PLC 提供端口"S/S",用来选择输入信号是源型输入或漏型输入。

6.1.1 晶体管输入规格

项目	高速输入端指标	普通输入端指标
输入阻抗	3.3k Ω	$4.3 \mathrm{k}\Omega$
输入电流	6.5mA 典型值	5.3mA 典型值
ON 电压/电流	DC18V /4.5mA 最小值	DC18V /3mA 最小值
OFF 电压/电流	DC4V /1mA 最大值	DC4V/1mA 最大值
速度要求	单路≤50Khz,2 路总频率 ≤80khz	≤100HZ


6.1.2 接线方式

漏型输入方式:将 S/S 端子与+24V 端子相连。此方式可以连接 NPN 型传感器。漏型输入方式的内部等效电路及外部接线方式如下图所示。


源型输入方式:将 S/S 端子与 COM 端子短接。此方式可以连接 PNP 传感器。源型输入方式的内部等效电路及外部接线方式如图所示

晶体管输入规格

6.2 开关量输出特性与信号规格

MCCD 系列的输出端子分为若干组,每组之间是电气隔离的,不同组的输出触点接入不同的电源回路;输出分为继电器与晶体管两种输出两种类型。晶体管输出级只能用于直流 24V 负载回路,且须注意电源极性。直流回路的感性负载,应考虑增加续流二极管;对于交流回路的感性负载时,外部电路应考虑 RC 瞬时电压吸收电路;如下图所示。

输出端口的特殊功能

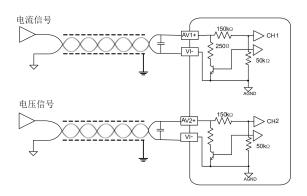
晶体管输出型主模块包含三个高速输出端口 Y0, Y1 和 Y2, 三个通道可以独立输出高速脉冲。提供高速 I/0 指令和定位指令对高速输出通道进行管理。作为高速输出时,建议相应输入端口的线缆采用双绞屏蔽线,并将屏蔽层接地(同⊕端子连接或连接信号地),以提高抗扰性。

6.2.1 高速晶体管输出规格

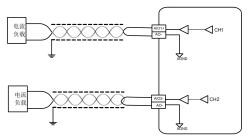
项目	指标
回路电源电压	30Vdc 以下
电路绝缘	光耦隔离绝缘
最小负载	5mA (5~24VDC)
电阻负载最大输出电流	0.5A/1 点;
感性负载最大输出电流	7.2W/24VDC
ON 响应时间	10uS
OFF 响应时间	10uS
响应频率	≤100kHz

6.2.2 普通晶体管输出规格

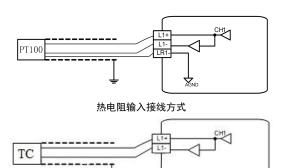
项目	指标
回路电源电压	30Vdc 以下
电路绝缘	光耦隔离绝缘
最小负载	5mA (5~24VDC)
电阻负载最大输出电流	0.5A/1 点;
感性负载最大输出电流	7.2W/24VDC
ON 响应时间	0.5ms
OFF 响应时间	0.5ms
响应频率	≤100Hz


6. 2. 3 继电器输出规格

项目	指标
电路绝缘	继电器隔离绝缘
触点负载 (阻性)	5A 250VAC/30VDC
最大切换电压	250VAC/30VDC
最大切换电流	2A
最大切换功率	1250VA/150W
ON 响应时间	10ms
OFF 响应时间	10ms
输出公共端	每个公共端之间彼此隔离。


7. 模拟量部分输入输出特性

7.1 接线方式


具体接法如下图所示:

模拟量输入接线方式

模拟量输出接线方式

TC 输入接线方式

- * 建议使用双绞屏蔽电缆接入,电缆应远离电源线或其他可能产生电气干扰的电线、用户端子、扩展电缆和接口扩展电缆。
- * 如果输入信号有波动,或在外部接线中有电气干扰,建议接一个平滑电容($0.1 uF \sim 0.47 uF/25V$)。
- * 建议使用长度小于 100m 的连接电缆, 以减少测量误差和噪声干扰。

7.2 规格指标

7.2.1 电流电压输入通道规格

	项目	指标		
转换速度	度	15ms/通道(常速),6ms/通道	(高速)	
模拟输	电压输入	OVDC~+10VDC,输入阻抗 1MΩ	各通道属性可通过 X-Builder 编程软件	
入量程	电流输入	0mA~+20mA,输入阻抗 250 Ω	单独设置	
数字输出		范围: 0~+2000		
分辨率	电压输入	5mV		
电流输入		10uA		
精度		满量程的±1%		
隔离		模拟电路和数字电路之间不隔离		

7.2.2 模拟量输出通道规格

项目		指标
转换速度		2ms/通道
世 电压输出		0~+10VDC,外部负载阻抗不小于 1KΩ
模拟输出	电流输出	0mA~+20mA, 外部负载阻抗不大于 500 Ω
*+- ← +> 11	电压输出	默认设置: 0~+2000
数字输出	电流输出	默认设置: 0~+2000
分辨率	电压输入	5mV
刀が竿	电流输入	10uA
精度		满量程的±1%
隔离		模拟电路和数字电路之间不隔离

7.2.3 热电阻输入通道规格

项目		指标
热电阻类型		Pt100、Cu100、JPt100、Cu50、Ni120
温度控制输出方式		晶体管和模拟量输出可配置
采样周期		约 100ms
控温周期		1~100,单位 1s,具体数值由控温对象特性决定
控制方法		手动控制,ON/OFF 控制,PID 控制
传感器类型和测温 范围	Pt100	-150°C~600°C (-238°F~1112°F)
	JPt100	-150°C~500°C (-238°F~932°F)
	Cu100	-30°C ~120°C (−22°F ~248°F)
	Cu50	-30°C ~120°C (−22°F ~248°F)
	Ni 120	-80.0°C~280.0°C (-112.0°F~536.0°F)
热电阻		输入范围±0.5%

7.2.4 TC 输入通道指标

项目		指标
输入信号	热电偶类型	K, J, E, N, T, R, S, B
输出方式	门极开路的 晶体管输出	回路电源电压: 5V~24V; 最大回路电源电压: 30V; 回路电流: 0.3A/24Vdc; 开路时漏电流: < 0.1mA/30Vdc; 最小负载: 5mA (5Vdc~24Vdc)
采样周期		约 100 毫秒

项目		指标
控温周期		1~100,单位 1s,具体数值由控温对象特性决定
控制方法		ON/OFF 控制,手动控制,单 PID 控制
额定温度 范围	类型 K	-100°C~1200°C (-148°F~2192°F)
	类型 J	-100°C~1200°C (-148°F~1112°F)
	类型 E	-100°C~850°C (-148°F~1562°F)
	类型 N	-100°C~1200°C (-148°F~2192°F)
	类型 T	-200°C~300°C (-328°F~572°F)
	类型 R	0°C~1600°C (32°F~2912°F)
	类型 S	0°C~1600°C (32°F~2912°F)
	类型 B	400°C∼1800°C (752°F∼3272°F)
精度	热电偶	±0.3%输入范围,环境温度补偿误差<=2℃
	热电阻	±0.5%输入范围
隔离		通道与通道之间隔离

8. 常见问题及解决方案

当模块不能正常工作时,请依次检查:

(1) 电源线路的连接及相关开关、保护电器的状况,确保模块已可靠供电; (2) 用户端子的接线是否牢固;

若上述检查完成后仍无法工作,可参考下表。

现象	可能原因	处理对策	
	电源失压或电压过低	检查电源状况,予以排除	
RUN 和 ERR	电源开关断开或熔断器熔断	检查开关、导线或熔断器状况,	
灯均不亮	电源接线异常	予以排除	
	电源损坏		
RUN 和 ERR 灯同时间歇 不亮	电源供电不稳	检查并确认: 24V+、24V-端子间电压是否 正常范围;	
	模块损坏		
RUN 灯	被上位机设备遥控停机	令上位机遥控开机	
不亮	系统错误停机	用助手检查	
ERR 信号 灯亮	系统错误停机	用助手检查,查阅勘误手册	

- 1. 保修范围指可编程控制器本体。
- 2. **保修期为十八个月**,保修期内正常使用情况下,产品发生故障或损坏,我公司免费维修。
- 3. **保修期起始时间为产品制造出厂日期**, 机器编码是判断保修期的唯一依据, 无机器编码的设备按过保处理。
- 4. 即使在保修期内,如发生以下情况,将收取一定的维修费用:

不按用户手册操作导致的机器故障;

由于火灾、水灾、电压异常等造成的机器损坏;

将可编程控制器用于非正常功能时造成的损坏。

自行拆卸可编程控制器

- 5. 服务费按实际费用计算,如另有合同,以合同优先的原则处理。
- 6. 如您有问题可与代理商联系,也可直接与我公司联系。

深圳市麦格米特控制技术有限公司

SHENZHEN MEGMEET CONTROL TECHNOLOGY CO., LTD

地址:深圳市南山区科技园北区朗山路紫光信息港 B 座五楼

电话: 400-666-2-163

传真: (+86)0755-86600999

邮编: 518057

公司网址: www.megmeet-ia.com